Reviewing the geometric Hamilton–Jacobi theory concerning Jacobi and Leibniz identities

نویسندگان

چکیده

Abstract In this survey, we review the classical Hamilton–Jacobi theory from a geometric point of view in different backgrounds. We propose equation for structures attending to one particular characterization: whether they fulfill Jacobi and Leibniz identities simultaneously, or if at least satisfy them. This property reviews work present authors such way that it is presented according hierarchy nested brackets. new outlook which do not only themselves, but their hierarchical relations how affect dynamic through equation. regard, case time-dependent ( t -dependent sequel) dissipative physical systems as identity Leibnitz identity, instances cosymplectic contact mechanical problems. Let us remark here means dissipation provided by parameter included Hamiltonian function, instance, entropy some thermodynamical systems. Furthermore, contact-evolution split off regular geometry, actually satisfies rule instead Jacobi. include novel result, conformal vector fields generalization well-known on symplectic manifold, retrieved zero factor. The interest primordial observation field X H can be projected into configuration manifold one-form d W , then integral curves X H d W transformed solution Geometrically, plays role Lagrangian submanifold certain bundle. Exploiting these features scenarios multiple depending fundamental satisfies. Different examples are pictured reflect results provided, being all them new, except reassessment previously considered example. Finally, let mention an important issue study separability, relevant finding conserved quantities. However, will deal with subject although refer reader papers [16, 17, 136].

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Identities in Lattice Theory

An Arguesian identity is an identity in Grassmann-Cayley algebras with certain multi-linear properties of expressions in joins and meets of vectors and covectors. Many classical theorems of projective geometry and their generalizations to higher dimensions can be expressed as simple and elegant Arguesian identities. In a previous work we showed that an Arguesian identity can be unfolded with re...

متن کامل

On Fox Spaces and Jacobi Identities

In 1945, R. Fox introduced the so-called Fox torus homotopy groups in which the usual homotopy groups are embedded and their Whitehead products are expressed as commutators. A modern treatment of Fox torus homotopy groups and their generalization has been given and studied. In this note, we further explore these groups and their properties. We discuss co-multiplications on Fox spaces and Jacobi...

متن کامل

Jacobi identities, modular lattices, and modular towers

We give first a simple proof of a generalized Jacobi identity for n-dimensional odd diagonal lattices which specializes to the classical Jacobi identity for the lattice Z2. For Z +√ Z, it recovers a one-parameter family of Jacobi identities discovered recently by Chan, Chua and Solé, used to deduce two quadratically converging algorithms for computing π corresponding to elliptic functions for t...

متن کامل

A Geometric Hamilton-jacobi Theory for Classical Field Theories

In this paper we extend the geometric formalism of the Hamilton-Jacobi theory for hamiltonian mechanics to the case of classical field theories in the framework of multisymplectic geometry and Ehresmann connections.

متن کامل

the analysis of the role of the speech acts theory in translating and dubbing hollywood films

از محوری ترین اثراتی که یک فیلم سینمایی ایجاد می کند دیالوگ هایی است که هنرپیش گان فیلم میگویند. به زعم یک فیلم ساز, یک شیوه متأثر نمودن مخاطب از اثر منظوره نیروی گفتارهای گوینده, مثل نیروی عاطفی, ترس آور, غم انگیز, هیجان انگیز و غیره, است. این مطالعه به بررسی این مسأله مبادرت کرده است که آیا نیروی فراگفتاری هنرپیش گان به مثابه ی اعمال گفتاری در پنج فیلم هالیوودی در نسخه های دوبله شده باز تولید...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A

سال: 2022

ISSN: ['1751-8113', '1751-8121']

DOI: https://doi.org/10.1088/1751-8121/ac901a